Synthesis of the Diterpenoid Grayanol B from Grayanotoxin II

By Toyo Kaiya, Naohiro Shirai, and Jinsaku Sakakibara*

(Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467, Japan)

Summary Treatment of grayanotoxin II (1) with thallium(III) acetate in acetic acid at room temperature, followed by alkaline hydrolysis, yields grayanol B (3b).

Leucothoe grayana, a well known poisonous shrub of Japan, contains three structural groups of diterpenoids: grayanotoxins (1), leucothols (2), and grayanols (3). In the course of our study to correlate them chemically, we reported a one-step synthesis of leucothol D (2) from grayanotoxin II (1) by using palladium acetate. We now describe a facile conversion of (1) into grayanol B (3b) by means of thallium(III) acetate.

Treatment of (1) with thallium(III) acetate in acetic acid at room temperature for two days gave a product (4), whose

 1 H n.m.r. spectrum showed the presence of one secondary acetoxy-group. Its 13 C n.m.r. spectrum was very similar to those reported for grayanol A (**3a**) and grayanol B (**3b**) (Table). Mild alkaline hydrolysis of (**4**) yielded a crystalline product, $C_{20}H_{32}O_{6}$, m.p. 203—204 °C, which was identical (by m.m.p., i.r. spectroscopy, and t.l.c.) with an authentic specimen of grayanol B isolated from the plant. Thus, we have been able to achieve simply the chemical conversions of grayanotoxin II (**1**) into leucothol D (**2**) and grayanol B (**3b**).

TABLE. ¹³C N.m.r. data in C_5D_5N ($\delta/p.p.m.$). (3a) (3b) (4)^a

	(3a)	(3b)	(4)a
-CH ₃	16.4	$16 \cdot 2$	15.9
•	24.0	23.5	23.6
	25.9	25.6	$25 \cdot 6$
-CH ₂ -	26.6	25.6	25.9
2	27.2	$27 \cdot 9$	27.2
	35.4	38.4	35.8
	45.3	45.5	45.1
	57 ·8	53.5	57.7
>CH	51.7	50.7	51.0
7022	53.9	53.5	53.4
>C <	53.3	53.9	53.2
<i>></i> 0 <	54.3	58.0	54.5
>CHOH	67.9	67.4	67.5
and	70.7	69.8	69.5
>CHOAc	79.2	73.1	74.2
_CHOM	85.7	78·9	78.9
≽COH	80.4	79-9	79.9
>C=CH ₂	115.2	111.6	113.8
-	150.9	157-1	151.9
>C=O	215.6	207.7	$215 \cdot 2$
^a -COCH ₃ 21·1 and 170·1 p.p.m.			

A likely intermediate of this reaction is regarded as the thallium compound (5).

We thank Dr. S. Fushiya at Tohoku University for a specimen of grayanol B.

(Received, 9th October 1980; Com. 1101.)

¹ T. Kaiya, N. Shirai, and J. Sakakibara, J. Chem. Soc., Chem. Commun., 1979, 431.

² S. Fushiya, H. Hikino, and T. Takemoto, Tetrahedron Lett., 1974, 183.